Ориентирование по насекомым, птицам и деревьям. Где у птицы компас? Как ориентируются перелетные птицы

До сих пор не раскрыта одна из интереснейших загадок, стоящих перед наукой,- загадка сезонных перелетов птиц, их необыкновенной способности безошибочно определять нужный курс.

Что служит птицам навигационным прибором?

Что настраивает этот прибор на заданный маршрут — Солнце, звезды, магнитные силы Земли или же что-то иное?

Одна за другой появляются на этот счет гипотезы, которые проверяются во многих лабораториях мира.

О проверке одной из таких гипотез и рассказывает публикуемый ниже материал.

Одна из самых привлекательных, но и трудных загадок живой природы — навигационные способности птиц. Как ориентируются в пространстве перелетные птицы или, например, почтовые голуби, издавна служившие человеку? Как находят они цель полета?

Более двадцати лет назад было высказано предположение, что голубь обладает особой памятью, регистрирующей две характеристики места, где он родился или же долгое время жил: величину кориолисова ускорения и напряженность магнитного поля Земли.

Напомним, что кориолисово ускорение возникает, например, тогда, когда одно тело движется поступательно по другому, имеющему вращательное движение. В частности, это ускорение заставляет речные потоки размывать правые берега русел в северном полушарии и левые — в южном.

Гипотеза говорила, что, когда птицу увозят на какое-то расстояние от дома, а затем выпускают, она летит в том направлении, где изменения величины полей — кориолисова ускорения и магнитного — происходят в сторону тех значений, к которым она привычна. То есть она летит к месту, откуда ее увезли и куда она должна вернуться.

Это предположение получало вроде бы убедительное подтверждение. Если на карте изобразить линии кориолисова и магнитного полей, то образуется сетка из скрещивающихся под углом линий. При этом окажется, что у каждой точки в северном полушарии есть «двойник» в южном — точка, где магнитное поле и кориолисово ускорение по величине имеют то же значение.

Провели такой опыт: голубя, выросшего в северном полушарии, привезли в южное и выпустили не очень далеко от точки, «симметричной» точке его месторождения. И голубь прилетел в эту точку без каких-либо колебаний, словно он летел домой по известному маршруту.

Однако как ни стремились исследователи обнаружить в организме птицы механизм, способный определять величину кориолисова ускорения, его найти не удалось.

Эксперименты выявляют новые способности птиц

Недавно подведен итог новых экспериментов, которые, кажется, приближают разгадку способностей пернатых штурманов.

После того как разрушилась гипотеза двух полей, ученые обратились к самым тонким и хитроумным методам исследования, лишь бы заставить природу заговорить.

Голубей отправляли к месту старта, например, во вращающихся барабанах или запутанными окружными дорогами.

Хирургическим путем нарушалось нормальное действие органа равновесия.

Птицам подвешивали постоянные магниты или витки проволоки, в которых магнитное поле Земли возбуждало при полете электродвижущую силу, — так изучалось взаимодействие птицы и магнитного поля планеты. Птицам завязывали глаза. Однако никакие уловки не помогли ученым запутать птиц. Они неизменно прилетали в нужное место, и самым коротким путем.

Высокая надежность ориентации (опыты, о которых мы только что говорили, безусловно, это доказывают) привела ученых к выводу, что голубь вооружен несколькими, по меньшей мере двумя системами пространственной ориентации, основанной на разных природных явлениях.

Продвинутьсявперед удалось исследователям из Корнельского университета, поставившим новую серию опытов.

В первой группе опытов голубей помещали в герметически плотной металлической камере, при этом у птиц, соединенных с приборами, можно было регистрировать частоту ударов сердца. Время от времени в камере слегка изменялось давление воздуха и одновременно голуби получали легкий удар электрическим током. Так у птиц вырабатывался условный рефлекс.

Во второй половине опыта изменялось только давление воздуха. И, тем не менее, частота ударов сердца у птиц возрастала, хотя они не получали пугающего удара током. Так удалось установить, что голуби чувствительны к очень незначительным изменениям атмосферного давления.

Сходные по методике опыты, также начинавшиеся выработкой условного рефлекса, должны были выявить, чувствительны ли эти птицы к магнитному полю Земли. И опыты доказали, что голуби улавливают даже очень слабые электромагнитные колебания. По оценкам исследователей, птицы способны реагировать на изменения в одну пятисотую и даже тысячную долю нормального магнитного поля Земли.

При взрывах на Солнце, которые отзываются у нас магнитными бурями, голуби при полете домой слегка отклоняются от обычного, наиболее выгодного пути.

Аналогичным образом, используя частоту пульса как внешний показатель реакций организма птицы, ученые доказали, что голуби так же, как и пчелы, могут отличать поляризованный свет от обыкновенного. Это означает, что достаточно голубю увидеть на небе лишь единственное пятнышко чистого, не затянутого тучами небосвода, чтобы он мог определить положение Солнца.

Некоторые исследователи уже давно предполагали, что этих способностей птицам достаточно для решения всех своих навигационных задач. Однако тонкими экспериментами было доказано, что голубь, зная положение Солнца и пользуясь своими «внутренними часами», может определить лишь север и юг, а не направление к родной голубятне.

Это подтверждают и опыты с голубями, которым «переставили» их биологические часы: благодаря искусственному освещению и затемнению у них перевернули представление о дне и ночи. Такие дезориентированные во времени птицы, отправившись в полет, совершали ошибку в выборе направления, как раз пропорциональную заложенной в их сознание временной ошибке.

Системы ориентации птиц

Однако недавно в лаборатории Корнельского университета обнаружили, что, когда небо сплошь затянуто облаками и голубь нигде не может увидеть прямого солнечного луча, а его внутренние часы «переставлены», птица, тем не менее, совершенно правильно находит дорогу домой, словно бы и не было этих двух помех, исключающих навигацию по Солнцу.

Оставалось согласиться с тем, что у птицы есть еще вторая, совершенно независимая от Солнца система ориентации. Для поисков второй системы решено было полностью исключить Солнце из опытов.

На голубятне Корнельского университета две стаи были приучены к полетам во время моросящих дождей, при плотной низкой облачности. Подозрение снова пало на магнитное поле.

Голубям одной стаи прикрепили на крылья маленькие постоянные магниты. Птицы из другой стаи получили такие же по весу грузики, однако, из немагнитного материала. Вторая стая всегда дружно возвращалась домой, чего нельзя сказать о голубях, которым подвешенные магниты мешали правильно воспринимать магнитное поле Земли.

Ученые пришли к выводу, что, когда есть хоть клочок чистого неба, голуби предпочитают пользоваться солнечной ориентацией. Если нет на небе светила — они ищут направление с помощью магнитной системы навигации.

Многие исследователи становятся, однако, в тупик: где же находятся в теле голубя органы, воспринимающие природное магнитное поле?

На этот счет недавно появилось весьма любопытное предположение. Не следует ли считать таким органом кровеносную систему птицы?

В самом деле: кровь представляет собой электролит (раствор хлористого натрия и других солей), в котором к тому же взвешены ферромагнитные частицы (красные кровяные тельца, содержащие железо).

В целом вся система артерий и вен птицы представляет собой токопроводящий контур, в котором при движении птицы в магнитном поле непременно должна возникнуть электродвижущая сила. Величина этой ЭДС, в частности, будет зависеть от того, под каким углом контур пересекает линии поля, то есть в каком направлении летит птица.

Магнитное поле земли и человек

Здесь нужны еще точные опыты и измерения. Но ведь факт, что даже огрубелые, не столь чувствительные к природным явлениям человеческие организмы реагируют на изменения магнитного поля Земли, особенно в период взрывов на Солнце.

Сильней всего они сказываются на людях с больной кровеносной системой. Не случайно лечебные учреждения, где есть такие больные, получают от астрономов, ведущих службу Солнца, предупреждения о приближении магнитной бури.

В последнее время ученые обнаруживают, что на человека — и не только больного — влияют и более мягкие факторы, связанные с магнитным полем Земли,- а не только бури.

Итак, у голубя, по меньшей мере, две системы ориентации. Однако, как мы видим, нерешенных загадок, которые задают крылатые штурманы исследователям, осталось еще достаточно много.

Одна из интереснейших проблем, касающихся поведения животных, - это вопрос о том, каким образом животные находят путь при миграциях на дальние расстояния. Хотя способность к навигации обнаружена у многих видов позвоночных, в наибольшей степени она проявляется у птиц при их перелетах на большие расстояния, что и по сей день остается самым непонятным явлением в поведении животных. Расстояния, которые птицы преодолевают при этом, огромны: например, полярная крачка размножается в Арктике, а зимует в Антарктике. Точность ориентации птиц также впечатляюща: они могут перелетать на другой континент, возвращаясь всегда на одно и то же место. Хотя такие перелеты вызывают множество интересных вопросов, все же наиболее важен вопрос о том, как птицы находят свой путь.

Типы ориентации

Существуют разные способы ориентации. Гриффин предложил для этого следующую классификацию:

Пилотирование - определение курса с помощью знакомых ориентиров. Многие виды птиц для определения направления полета используют какие-либо заметные особенности данной местности.

Ориентация по странам света - способность двигаться в направлении определенной страны света без каких-либо ориентиров. Некоторые виды птиц для определения направления полета используют различные ключевые стимулы. Если бы эти птицы ориентировались только по странам света, то отклонение от правильного курса по долготе привело бы к тому, что в конце концов они оказались бы далеко от их настоящей цели, так как они не смогли бы внести поправку на подобное смещение.

Истинная навигация - способность ориентироваться в направлении определенного места (цели) без соотнесения с ориентирами на местности. Животное, обладающее такой способностью, может внести поправку на отклонение от курса по долготе и прибыть в нужное место.

Шестое чувство птиц, или что помогает им ориентироваться во время миграции?

Одной из известных биологических особенностей птиц являются периодические миграции. Способность к полету позволяет им перемещаться на значительные расстояния, иногда проводя различные времена в разных частях планеты. Часто перелет - это долгий и опасный путь, а места остановки могут быть расположены друг от друга на значительном расстоянии. Например, исландские побережники (Calidris cantus), гнездящиеся в арктических тундрах, зимуют на морских побережьях южного полушария, питаются только на мелководных морских побережьях со специфическими условиями. Места их гнездования и пригодные для зимовки участки морских побережий находятся на расстоянии тысячи километров друг от друга.

Перелет между этими районами довольно опасен и требует много энергии, а следовательно цена ошибки в навигации слишком высока.Каким образом птицы находят путь от мест зимовки к местам гнездования и наоборот, что помогает им не сбиться с дороги в незнакомых для них условиях? Способность птиц к ориентации в глобальном масштабе является одним из ключевых биологических вопросов. За последние 20 лет в направлении изучения ориентации птиц был сделан значительный прорыв: использование широкого спектра научных данных позволило приблизиться к пониманию того, какие признаки и органы чувств птицы используют для навигации.

Существуют многочисленные впечатляющие подтверждения способности птиц к ориентации. Когда мигрирующих птиц в порядке эксперимента перевозили на большие расстояния в неизвестные для них места, они достаточно быстро находить обратный путь.

Альбатросы пролетали 6630 километров от Филиппин до своих гнездовий в Тихом океане за месяц, белые аисты, которых перевозили из Польши в Палестину, одолели эти 2200 км за 19 дней. Еще интереснее выглядят опыты, когда птиц перемещали далеко от пролетных путей в начале миграции и они так корректировали свое направление миграции, чтобы все равно попасть к своим обычным местам зимовки. Белоголовых зонотрихий, которые гнездятся на севере Северной Америки, а зимуют на юге этого материка, перемещали более чем на 3000 км от районов их зимовок, но они все равно возвращались к привычным территориям.

Особенностью всех этих экспериментов является то, что к такой навигации способны только взрослые птицы, которые уже имеют опыт миграции и бывали на своих местах зимовок. Наблюдения за мигрирующими альбатросами показывают, что эти птицы еще с расстояния около 500 километров способны брать прямой курс на те острова, где находятся их гнездовья так, словно они имеют собственную навигационную систему вроде GPS. Именно с глобальной системой позиционирования (GPS) у современного человека ассоциируется способность птиц к навигации. Наша система навигации основана на закономерном изменении двух показателей: высоты солнца над горизонтом (широта) и времени восхода и захода солнца (долгота). Основная теория, объясняющая навигационные способности птиц, заключается в том, что птицы используют глобальные изменения каких-то показателей для установления своего положения в пространстве с помощью двух координат. Какие это чувства? Допустим, установить высоту солнца над горизонтом не трудно.

Но специальные опыты показали, что «внутренние времена» птиц калибруются именно по временивосхода и захода солнца, так что установить по ним, что в одной точке земного шара солнце восходит раньше, чем в другой, невозможно. Поэтому внимание исследователей было приковано к поиску других сигналов. Были предложены несколько вариантов: изменения запахов, инфразвуки, вызванные геологическими или климатическими явлениями, интенсивность и наклон магнитного поля земли.

Довольно интересные данные были получены при изучении роли запахов в навигации птиц. Многочисленные исследования показали, что почтовые голуби действительно активно используют запахи для ориентации в пространстве, способны следовать по ветру до источника запаха, который ассоциируется у них с голубятней. Но существует существенное ограничение использования запахов для навигации: в природе никакие глобальные изменения запахов не достигают более чем на несколько сотен километров, так что они скорее пригодны для локальной ориентации, чем для глобальной навигации.

Согласно одной из теорий, ощущение запахов действительно эволюционно возникло у животных как средство ориентации в пространстве, но у современных птиц ощущение запахов служит скорее пусковым механизмом, который включает другие, более прогрессивные системы навигации во время миграционного периода. Самый большой прорыв произошел в изучении способности птиц чувствовать магнитное поле. Еще в XIX веке было высказано предположение, что птицы способны чувствовать напряженность магнитного поля, и это помогает им ориентироваться.

У магнитного поля как для средства навигации есть также минусы: существуют многочисленные магнитные аномалии, в которых использовать показатели магнитного поля сложно, а еще изменения магнитного поля настолько слабые, что ощущаются только на больших расстояниях. Существуют доказательства того, что по меньшей мере 24 вида птиц способны чувствовать магнитные поля и использовать их для навигации.

Лучше всего, если мы сразу признаемся, что не знаем точного ответа. Разумеется, кое-что нам все же известно, но наша теория не всегда выдерживает проверку.

Способность перелетных птиц к ориентации поразительна. Вдумайтесь сами: ласточка по одним лишь ей ведомым приметам прилетает в Африку! Но самое удивительное заключается в том, что живущая в наших краях ласточка (а это убедительно доказало кольцевание птиц) возвращается из Африки домой. Не только в Венгрию, но даже в ту самую деревню, откуда она пустилась в дальний путь, к тому самому дому, под крышей которого она свила гнездо. Можно сказать, что все эти чудеса объясняются работой некоего таинственного внутреннего механизма. Мы называем механизм ориентации таинственным, потому что еще не сумели раскрыть его тайну.

Самая распространенная теория ориентации состояла в том, что птицы обучают маршрутам перелетов себе подобных. Маршрут передается из поколения в поколение: старшие летят во главе стаи, младшие следуют за ними и со временем сами обретают способность находить дорогу домой или к местам зимовки. В основном это верно: тому есть примеры. Но начнем с "контрдовода"- с кукушки. Всем известно, что кукушка не знает своих истинных родителей: взрослая кукушка откладывает яйцо в чужое гнездо, и выращиванием птенца занимаются птицы других видов. Осенью кукушки улетают в Африку или в тропические леса Южной Азии. Но удивительнее всего, что потомство пускается в путь позже, когда кукушки старшего поколения находятся уже в пути. Они летят без вожаков, и никогда не ошибаются в выборе маршрута. Их ведет врожденный инстинкт.

Как выбирают маршрут перелета аисты? Следуют за старшими или руководствуются врожденным инстинктом? Выяснением этого вопроса занимался немецкий орнитолог Шюц. Он поставил весьма остроумные эксперименты. Аист-птица крупная, и сравнительно легко удалось установить, что западноевропейские аисты совершают перелеты по одним, а восточноевропейские - по другим маршрутам. Аисты летают планируя, они любят восходящие воздушные потоки и поэтому не срезают путь, прокладывая маршрут напрямик через море, а стремятся пересечь его в узких местах. Европейские аисты стремятся попасть кратчайшим путем в Африку. Восточноевропейские аисты летят через Босфор, а западноевропейские пересекают море у Гибралтара. Требовалось выяснить, обучаются ли аисты навигационному искусству у старших или же маршрут им подсказывает врожденный инстинкт.

Для своего первого опыта Шюц взял восточноевропейских аистов. Из гнезд он выбрал по птенцу и выкормил их сам. На волю Шюц выпустил птенцов лишь после того, как старшие аисты улетели. Молодым аистам не оставалось ничего другого, как проложить маршрут самим, без опытного вожака, и они успешно справились с задачей, избрав тот же маршрут в Африку, что и их родители. Несколько аистов было поймано в Греции: очевидно, они не сумели найти кратчайший путь через море в районе Босфора. Но направление полета в основном было выбрано верно. Значит, аистов вел врожденный инстинкт.

Затем Шюц поставил новый опыт. На этот раз он взял 754 птенца восточноевропейского аиста, отвез их на запад и предоставил выкармливать местным аистам. Сообщения удалось получить почти о 100 окольцованных птенцах: вместе со старшими они проследовали через Средиземное море по западному маршруту - у Гибралтара. Влияние старших на выбор направления оказалось сильнее, чем врожденный инстинкт.

После этого Шюц поставил еще более интересный опыт. Он увез на запад птенцов восточноевропейского аиста и там выкормил их. На волю Шюц выпустил птенцов, когда местные аисты старшего поколения уже улетели. Молодые аисты отправились было сначала в юго-западном направлении, затем повернули на юго-восток, т. е. полетели по традиционному маршруту своих предков. Из опытов Шюца следовало, что аистам подсказывает маршрут перелета врожденный инстинкт, руководствуясь которым, летали их родители. Если же поблизости оказывались аисты старшего поколения, то маршрут выбирался под влиянием вожака стаи, а им был аист старшего поколения. Следовательно, влияние старших подавляло выбор маршрута, диктуемый врожденным инстинктом.

До сих пор мы говорили о том, что перелетные птицы умеют ориентироваться, т. е. так или иначе находить дорогу к местам зимовки, а затем обратную дорогу домой. Как они ориентируются? Мы видели, что известную роль играет обучение, но не все здесь до конца ясно.

Императорские пингвины (Aptenodytes)

Есть основания полагать, что птицы ориентируются так же, как моряки. Что необходимо капитану парусного судна для того, чтобы в открытом море проложить правильный курс и прийти в порт назначения? Прежде всего для этого необходим высокоточный прибор, известный под названием секстанта и позволяющий измерять высоту солнца над горизонтом. Однако одного лишь секстанта недостаточно, так как высота солнца зависит от времени года. Необходимы специальные таблицы. Еще капитану понадобятся точные часы - хронометр: положение солнца на небосводе непрестанно изменяется с утра и до вечера. Разумеется, ни один капитан судна не обрадуется столь скудному выбору навигационных средств, но любой судоводитель в случае необходимости смог бы проложить курс с их помощью.

Выяснилось, что перелетные птицы днем ориентируются по высоте солнца, т. е. пользуются своими естественными "навигационными приборами". Разумеется, никаких "биологических секстантов" и "биологических хронометров" у птиц нет. Это доказал своими опытами в первую очередь Крамер.

Он посадил скворцов в сферическую камеру, опирающуюся на кольцеобразную подставку. Камеру можно было по желанию затемнять и освещать. Если светило солнце, то скворцы ориентировались так же, как во время полета: они выдерживали направление движения или стремились вырваться на свободу в ту сторону, куда летели бы, не будь на их пути стенки. Но стоило затемнить камеру, как скворцы утрачивали способность ориентироваться и не могли выдержать направление движения.

Затем Крамер раздвинул шторки. Скворцы могли снова видеть солнце сквозь стеклянные окошки, на этот раз заклеенные папиросной бумагой. Свет был таким, как в тумане. Но это не мешало ориентироваться скворцам, они точно "знали" свой маршрут и бились о стенку камеры, стремясь продолжить полет в правильном направлении.

В следующем опыте Крамер зашторил окошко, обращенное к солнцу, и одновременно с противоположной стороны поставил зеркало, отражавшее солнечные лучи. Скворцы изменили направление полета на противоположное: ведь теперь они ориентировались по зеркальному отражению солнца! Так было доказано, что солнце влияет на способность скворцов ориентироваться в пространстве и даже что скворцов можно обмануть.

Некоторые перелетные птицы "путешествуют" по ночам . Сразу же возникает мысль о том, что они ориентируются по звездам. Такое предположение менее вероятно, поскольку свет звезд не столь интенсивен, как солнечный. К тому же, чтобы ориентироваться по звездам, необходимо основательно знать небосвод, чтобы уметь распознавать отдельные звезды и созвездия, да и наблюдать приходится не один сильный источник света, а множество слабых.

Заслуга в решении этого вопроса принадлежит немецкому орнитологу Зауэру. Для своих опытов он выбрал славку - неприхотливую певчую птицу размером меньше воробья. Зауэр содержал славок в неволе в таких условиях, что они вообще не видели естественного света. С того момента, как они вылуплялись из яиц, птенцы славки жили только при искусственном освещении. Опыт Зауэра показал, что жившие в неволе птицы осенью и весной, когда их свободные родичи совершали свои сезонные перелеты, приходили в состояние сильного возбуждения. "Биологический календарь" как бы говорил им: настала пора пускаться в путь.

Затем Зауэр поместил славок в клетки, полностью закрытые со всех сторон стеклом. Птицы могли видеть звездное небо. Теперь осенью и зимой, т. е. во время перелетов, подопытные славки стремились вырваться из клеток на север в том направлении, в котором улетают славки на волю.

Результат, полученный Зауэром, был особенно убедительным, поскольку орнитолог экспериментировал со многими видами славок. Гаичка, садовая и полевая славки стремились лететь на юго-запад, а малая славка - на юго-восток. Именно в этих направлениях летят осенью соответствующие виды, отправляясь на зимовку в Африку. Опыт Зауэра показал, что птицы ориентируются по звездному небу.

Затем экспериментатор перенес птиц в планетарий, где специальный аппарат проектирует на огромный яйцевидный купол светлые пятнышки, яркость, размеры и положение которых в точности соответствуют звездам и созвездиям на небосводе. (Зауэр поместил в планетарий стеклянные клетки с птицами.)

Первый из таких опытов проводился осенью. Сначала птицам показали "правильное" ночное небо - такое, какое они увидели бы, находясь на воле, и малая славка настойчиво стремилась вырваться из клетки в том направлении, в каком улетают на зимовье славки на воле. Но вдруг картина ночного неба изменилась: опыт производился в планетарии, и стоящий в центре зрительного зала специальный проекционный аппарат (планетарий) позволял с легкостью воспроизводить на своде ночное небо, видимое в любом месте на земле в любое время года. Теперь птицы видели звездное небо таким, как если бы находились не во Фрейбурге (где производились опыты), а в районе озера Балхаш. (За один час Земля поворачивается вокруг своей оси на 15° географической долготы, а наблюдателю, находящемуся на Земле, кажется, что небосвод поворачивается с такой же скоростью, но в противоположном направлении.)

Относительно небольшое число видов и особей гусеобразных, поганок, голенастых, хищников, куликов, чаек, воробьиных зимуют в южных районах бывшего СССР по берегам Черного моря, в Закавказье, на юге Каспия, в некоторых районах Средней Азии. Подавляющее большинство видов и особей наших птиц зимует за пределами страны на Британских островах и в Южной Европе, в Средиземноморье, во многих районах Африки и Азии. Например, в Южной Африке зимуют многие мелкие птицы из европейской части бывшего СССР (пеночки, камышовки, ласточки и др.), пролетающие от мест зимовок до 9-10 тыс. км. Пролетные пути некоторых видов еще длиннее. Гнездящиеся по побережьям Баренцева моря полярные крачки - Sterna paradisea зимуют у побережья Австралии, пролетая лишь в одну сторону до 16-18 тыс. км. Почти такой же пролетный путь у гнездящихся в тундрах Сибири бурокрылых ржанок - Charadrius dominica, зимующих в Новой Зеландии, и у колючехвостых стрижей - Hirundapus caudacutus, из Восточной Сибири отлетающих в Австралию и Тасманию (12-14 тыс. км); часть пути они пролетают над морем.

Во время миграций птицы летят с обычными скоростями, чередуя перелет с остановками для отдыха и кормежки. Осенние миграции обычно совершаются с меньшей скоростью, чем весенние. Мелкие воробьиные птицы при миграциях за сутки перемещаются в среднем на 50-100 км, утки - на 100-500 км и т. п. Таким образом, в среднем за сутки птицы тратят на перелет относительно небольшое время, иногда всего лишь 1-2 ч. Однако некоторые даже мелкие наземные птицы, например американские древесные славки - Dendroica, мигрируя над океаном, способны пролетать без остановки 3-4 тыс. км. за 60-70 ч непрерывного полета. Но такие напряженные миграции выявлены лишь у небольшого числа видов.

Высота полета зависит от многих факторов: вида птицы и пелетных возможностей, погоды, скорости воздушных потоков на разной высоте и т. п. Наблюдениями с самолетов и с помощью радаров было установлено, что миграции большинства видов проходят на высоте 450-750 м; отдельные стаи могут пролетать и совсем низко над землей. Значительно реже пролетных журавлей, гусей, куликов, голубей отмечали на высотах до 1,5 км и выше. В горах стаи летящих куликов, гусей, журавлей отмечали даже на высоте 6- 9 км над уровнем моря (на 9-м километре содержание кислорода на 70% меньше, чем на уровне моря). Водные птицы (гагары, поганки, чистиковые) часть пролетного пути проплывают, а коростель проходит пешком. Многие виды птиц, обычно активные только в дневное время, мигрируют ночью, а днем кормятся (многие воробьиные, кулики и др.), другие и в период миграции сохраняют обычную суточную ритмику активности.

У перелетных птиц в период подготовки к миграциям изменяется характер обмена веществ, приводящий при усиленном питании к накоплению значительных жировых запасов. При окислении жиры выделяют почти вдвое больше энергии, чем углеводы и белки. Резервный жир по мере надобности поступает в кровь и доставляется в работающие мышцы. При окислении жиров образуется вода, чем компенсируется потеря влаги при дыхании. Особенно велики запасы жира у видов, вынужденных во время миграции длительное время лететь без остановок. У уже упоминавшихся американских древесных славок перед полетом над морем запасы жира могут составлять до 30-35% их массы. После такого -броска- птицы усиленно кормятся, восстанавливая энергетические резервы, и опять продолжают перелет.

Изменение характера обмена, подготавливающего организм к перелету или к условиям зимовки, обеспечивается сочетанием внутренней годовой ритмики физиологических процессов и сезонных изменений условий жизни, в первую очередь изменением длины светового дня (удлинением - весной и укорочением - в конце лета); вероятно, определенное значение имеет и сезонное изменение кормов. У накопивших энергетические ресурсы птиц под влиянием внешних стимулов (изменение длины дня, погода, недостаток кормов) наступает так называемое -перелетное беспокойство-, когда поведение птицы резко меняется и возникает стремление к миграции.

У подавляющего большинства кочующих и перелетных птиц отчетливо выражен гнездовой консерватизм . Он проявляется в том, что размножавшиеся птицы на следующий год возвращаются с зимовки на место предыдущего гнездования и либо занимают старое гнездо, либо поблизости строят новое. Молодые, достигшие половой зрелости птицы возвращаются на свою родину, но чаще поселяются на каком-то расстоянии (сотни метров - десятки километров) от того места, где они вылупились ( рис. 63). Менее отчетливо выраженный у молодых птиц гнездовой консерватизм позволяет виду заселять новые, пригодные для него территории и, обеспечивая перемешивание популяции, предотвращает инбридинг (близкородственное скрещивание). Гнездовой же консерватизм взрослых птиц позволяет им гнездиться в хорошо знакомом районе, что облегчает и поиски пищи, и спасение от врагов. Существует и постоянство мест зимовок.

Как птицы ориентируются во время миграций, как выбирают направление перелета, попадая в определенный район на зимовку и возвращаясь за тысячи километров на место гнездования- Несмотря на разнообразные исследования, ответа на этот вопрос пока нет. Очевидно, у перелетных птиц есть врожденный миграционный инстинкт, позволяющий им выбирать нужное общее направление миграции. Однако этот врожденный инстинкт под влиянием условий среды, видимо, может быстро изменяться.

Яйца оседлых английских крякв были инкубированы в Финляндии. Выросшие молодые кряквы, как и местные утки, осенью улетели на зимовку, а следующей весной значительная их часть (36 из 66) вернулась в Финляндию в район выпуска и там загнездилась. В Англии ни одна из этих птиц не была обнаружена. Черные казарки перелетные. Их яйца инкубировались в Англии, и молодые птицы осенью вели себя на новом месте как оседлые птицы. Таким образом, объяснить и само стремление к миграции, и ориентировку во время перелета только врожденными рефлексами пока нельзя. Экспериментальные исследования и полевые наблюдения свидетельствуют, что мигрирующие птицы способны к астронавигации: к выбору нужного направления перелета по положению солнца, луны и звезд. При пасмурной погоде или при изменении картины звездного неба при опытах в планетарии способность к ориентации заметно ухудшалась.